同增异减指的是在复合函数当中(不仅仅是指数函数),内层函数和外层函数在相同的定义域内有相同的增减性或不同的增减性。
如果增减性相同(即增增或减减),那么这个复合函数的整体在这个定义域内为增函数,所以叫同增。
扩展资料:
如果增减性不同(即增减或减增),那么这个复合函数的整体在这个定义域内为减函数,所以叫异减。
具体的原理在高中知识的范围内不太好解释,如果有兴趣的话,可以举几个这样的复合函数的例子,通过画图来体会他们中间的变化关系。
。。
若f(a)f(b),ab,则f(x)在(b,a)上单调递增。
若f(a)f(b),ab,则f(x)在(b,a)上单调递减。
。。

1、同增异减是判断复合函数的单调性的一个原则。
2、原则是同增、同减即为增,一减一增即为减。利用同增异减原则可判断复合函数的单调性。先求复合函数的定义域,把复合函数分解为若干个常见函数,判断每个常见函数的单调性,最终求出复合函数的单调性。
同增异减指当一个复合函数的内函数与外函数单调性相同时,这个复合函数单调递增。反之,当一个复合函数的内函数与外函数单调性相反时,这个复合函数单调递减。
复合函数单调(增减)性
决定因素
依y=f(u),u=φ(x)的单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
基本步骤
⑴求复合函数的定义域;
⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
⑶判断每个常见函数的单调性;
⑷将中间变量的取值范围转化为自变量的取值范围;
⑸求出复合函数的单调性。
什么是单调函数
一般地,设一连续函数 f(x) 的定义域为D,则
如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1x2,都有f(x1)f(x2),即在D上具有单调性且单调增加,那么就说f(x) 在这个区间上是增函数。
相反地,如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1x2,都有f(x1) f(x2),即在D上具有单调性且单调减少,那么就说 f(x) 在这个区间上是减函数。
则增函数和减函数统称单调函数。
责任声明:凡注明“来源:成都号”的文章均由成都号整理,未经许可不得以任何形式转载!如本网内容涉及版权、隐私等权利问题,请相关权利人及时在线反馈给成都号,本网承诺会及时处理。
微信扫一扫
分享到朋友圈
了解更多成都本地办事、民生热点,欢迎关注微信公众号
成都号
cdmaolife