当n为偶数周期为π,当n为奇数周期为2π。
sinx函数,即正弦函数,三角函数的一种。正弦函数是三角函数的一种。对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫作正弦函数。
图像性质:
1、单调性:在[-(π/2)+2kπ,(π/2)+2kπ],k∈Z上是增函数;在[(π/2)+2kπ,(3π/2)+2kπ],k∈Z上是减函数。
2、对称性:关于直线x=(π/2)+kπ,k∈Z对称;关于点(kπ,0),k∈Z对称。
3、最值和零点:当x=2kπ+(π/2) ,k∈Z时,y(max)=1;当x=2kπ+(3π/2),k∈Z时,y(min)=-1。

sinx的周期是2π。
解析:
周期T=2π/w,w就是x前的系数,一般式sinwx。
对于大于 2π 或小于 −2π 的角度,简单的继续绕单位圆旋转。在这种方式下,正弦变成了周期为 2π的周期函数:
对于任何角度 θ 和任何整数 k。
sin的研究历史:
古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边,“勾”、“股”是直角三角形的两条直角边。
正弦是股与弦的比例,余弦是余下的那条直角边与弦的比例。
正弦=股长/弦长。
勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是∠A所对的弦,即正弦,勾就是余下的弦——余弦。
按现代说法,正弦是直角三角形的对边与斜边之比。
现代正弦公式是sin = 直角三角形的对边比斜边。
sinx的周期是2兀,判断sinx函数的周期,需要知道x的系数w,然后利用公式T=2兀/w就可以求出其周期,sinx是周期函数,最小正周期T二2兀。一般地只要通过一个最小正周期上〈即区间(一兀,兀)函数的性,就可以了解整个函数的相应性质。
一、函数的周期性:
设函数 f(x)在区间 X 上有定义,若存在一个与 x 无关的正数 T ,使对于任一 x∈X,恒有 f(x+T)= f(x)则称 f(x)是以 T 为周期的周期函数,把满足上式的最小正数 T 称为函数 f(x)的周期。
二、周期函数的运算性质:
①若T为f(x)的周期,则f(ax+b)的周期为 T/|a| 。
②若f(x),g(x)均是以T为周期的函数,则f(x)±g(x)也是以T为周期的函数。
③若f(x),g(x)分别是以T1,T2,T1≠T2为周期的函数,则f(x)±g(x)是以T1,T2的最小公倍数为周期的函数。
三、常见的周期函数有:
sinx,cosx,其周期 T=2π;tanx,cotx,|sinx|,|cosx|,其周期 T=π。
解题提示:判别给定函数f(x)是否为周期函数,主要是根据周期的定义,有时也用其运算性质。
四、例题:
设对一切实数x,有f(1/2 + x)= 1/2 + √【f(x)- f^2(x)】,则f(x)是周期为多少的周期函数?
解:f【1/2 +(1/2 + x)】= 1/2 + √【f(1/2 + x)- f^2(1/2 + x)】
=1/2 + √【1/4 - f(x) + f^2(x)】= 1/2 + 【 f(x) - 1/2】
= f(x),(由题设 f(x)≥1/2)
即 f(1+x) = f(x) ,故可知f(x)的周期为1 。
周期公式
sinx的函数周期公式
T=2π,sinx是正弦函数,周期是2π
cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。
tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。
secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。
拓展资料
函数周期性公式及推导:f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
f(x+a)=-f(x)
那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
f(x+a)=1/f(x)
那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
f(x+a)=-1/f(x)
那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
所以得到这三个结论。
2函数的周期性
设函数f(x)在区间X上有定义,若存在一一个与x无关的正数T,使对于任一x∈X,恒有f(x+T)=f(x)
则称f(x)是以T为周期的周期函数,把满足上式的最小正数T称为函数f(x)的周期。二、周期函数的运算性质:
①若T为f(x)的周期,则f(ax+b)的周期为T/al。
②若f(x),g(x)均是以T为周期的函数,则f(X)+g(X)也是以T为周期的函数。
③若f(x),g(x)分别是以T1,T2,T1≠T2为周期的函数,则f(x)+g(x)是以T1,T2的最小公倍数为周期的函数。
如果是sinx那么周期就是2π
周期T=2π/w
w就是x前的系数
一般式sinwx
当n为偶数周期为π,当n为奇数周期为2π。
sinx函数对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫作正弦函数。
sinx周期的判断:
因为对于任何的正弦三角函数y=sinx都是可以变成y=sin(x+2π)的,而无论x取何时的时候,都可以将其看成一个锐角的形式,根据三角函数恒等变形都是可以加上或者减去2π或者2π的整数倍的单位的,即y=sinπx=sin(πx+2π)。
所以很多同学就会将f(x)=sinx+sinπx直接写成是f(x+2π)=sin(x+2π)+sin(πx+2π)=f(x),从而得出错误的结论,认为有周期。
责任声明:凡注明“来源:成都号”的文章均由成都号整理,未经许可不得以任何形式转载!如本网内容涉及版权、隐私等权利问题,请相关权利人及时在线反馈给成都号,本网承诺会及时处理。
微信扫一扫
分享到朋友圈
了解更多成都本地办事、民生热点,欢迎关注微信公众号
成都号
cdmaolife